Saturday, November 23, 2019

how to control air pollution

Air pollution-derived particulate matter dysregulates hepatic Krebs cycle, glucose and lipid metabolism in mice

  • 1.
    Lelieveld, J., Evans, J. S., Fnais, M., Giannadaki, D. & Pozzer, A. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 525, 367–371 (2015).
  • 2.
    Wang, F., Ni, S. S. & Liu, H. Pollutional haze and COPD: etiology, epidemiology, pathogenesis, pathology, biological markers and therapy. J. Thorac. Dis. 8, E20–30 (2016).
  • 3.
    Liu, S. K. et al. The effect of pollutional haze on pulmonary function. J. Thorac. Dis. 8, E41–56 (2016).
  • 4.
    Hamanaka, R. B. & Mutlu, G. M. Particulate Matter Air Pollution: Effects on the Cardiovascular System. Front. Endocrinol. (Lausanne) 9, 680 (2018).
  • 5.
    Yang, B.-Y. et al. Ambient air pollution in relation to diabetes and glucose-homoeostasis markers in China: a cross-sectional study with findings from the 33 Communities Chinese Health Study. Lancet Planet Health. 2, e64–e73 (2018).
  • 6.
    Rajagopalan, S., Al-Kindi, S. G. & Brook, R. D. Air Pollution and Cardiovascular Disease. J. Am. Coll. Cardiol. 72, 2054 (2018).
  • 7.
    Sun, Q. et al. Ambient Air Pollution Exaggerates Adipose Inflammation and Insulin Resistance in a Mouse Model of Diet-Induced Obesity. Circulation. 119, 538–546 (2009).
  • 8.
    Zheng, Z. et al. Exposure to Ambient Particulate Matter Induces a NASH-like Phenotype and Impairs Hepatic Glucose Metabolism in an Animal Model. J. Hepatol. 58, 148–154 (2013).
  • 9.
    Leon, B. M. & Maddox, T. M. Diabetes and cardiovascular disease: Epidemiology, biological mechanisms, treatment recommendations and future research. World J. Diabetes. 6, 1246–1258 (2015).
  • 10.
    Rao, X., Patel, P., Puett, R. & Rajagopalan, S. Air pollution as a risk factor for type 2 diabetes. Toxicol. Sci. 143, 231–241 (2015).
  • 11.
    Liu, C. et al. Air pollution-mediated susceptibility to inflammation and insulin resistance: influence of CCR2 pathways in mice. Environ. Health Perspect. 122, 17–26 (2014).
  • 12.
    Tan, H.-H. et al. Kupffer cell activation by ambient air particulate matter exposure may exacerbate non-alcoholic fatty liver disease. J. Immunotoxicol. 6, 266–275 (2009).
  • 13.
    Conklin, D. J. From lung to liver: how does airborne particulate matter trigger NASH and systemic insulin resistance? J. Hepatol. 58, 8–10 (2013).
  • 14.
    Kim, J. W., Park, S., Lim, C. W., Lee, K. & Kim, B. The Role of Air Pollutants in Initiating Liver Disease. Toxicol. Res. 30, 65–70 (2014).
  • 15.
    Xu, X. et al. Long-term exposure to ambient fine particulate pollution induces insulin resistance and mitochondrial alteration in adipose tissue. Toxicol. Sci. 124, 88–98 (2011).
  • 16.
    Bruntz, R. C., Lane, A. N., Higashi, R. M. & Fan, T. W.-M. Exploring cancer metabolism using stable isotope-resolved metabolomics (SIRM). J. Biol. Chem. 292, 11601–11609 (2017).
  • 17.
    Titchenell, P. M., Lazar, M. A. & Birnbaum, M. J. Unraveling the Regulation of Hepatic Metabolism by Insulin. Trends Endocrinol. Metab. 28, 497–505 (2017).
  • 18.
    Lorkiewicz, P., Higashi, R. M., Lane, A. N. & Fan, T. W. High information throughput analysis of nucleotides and their isotopically enriched isotopologues by direct-infusion FTICR-MS. Metabolomics. 8, 930–939 (2012).
  • 19.
    Sellers, K. et al. Pyruvate carboxylase is critical for non–small-cell lung cancer proliferation. J. Clin. Invest. 125, 687–698 (2015).
  • 20.
    Erion, D. M., Park, H.-J. & Lee, H.-Y. The role of lipids in the pathogenesis and treatment of type 2 diabetes and associated co-morbidities. BMB Rep. 49, 139–148 (2016).
  • 21.
    Gnoni, G. V., Priore, P., Geelen, M. J. & Siculella, L. The mitochondrial citrate carrier: metabolic role and regulation of its activity and expression. IUBMB Life. 61, 987–994 (2009).
  • 22.
    Eze, I. C. et al. Long-Term Exposure to Ambient Air Pollution and Metabolic Syndrome in Adults. Plos One. 10, e0130337–e0130337 (2015).
  • 23.
    Xin, S., Qu, J., Xu, N. & Xu, B. PM2.5 inhalation aggravates inflammation, oxidative stress, and apoptosis in nonalcoholic fatty liver disease. Environ. Dis. 4, 62–68 (2019).
  • 24.
    Xu, X. et al. Effect of co-exposure to nickel and particulate matter on insulin resistance and mitochondrial dysfunction in a mouse model. Part. Fibre Toxicol. 9, 40–40 (2012).
  • 25.
    Yin, F. et al. Diesel exhaust induces systemic lipid peroxidation and development of dysfunctional pro-oxidant and pro-inflammatory high-density lipoprotein. Arterioscler Thromb Vasc Biol 33, 1153–1161 (2013).
  • 26.
    Liu, C. et al. Particulate Air pollution mediated effects on insulin resistance in mice are independent of CCR2. Part. Fibre Toxicol. 14, 6 (2017).
  • 27.
    Zhang, Y. et al. Ambient fine particulate matter exposure induces cardiac functional injury and metabolite alterations in middle-aged female mice. Environ. Pollut. 248, 121–132 (2019).
  • 28.
    Bouche, C., Serdy, S., Kahn, C. R. & Goldfine, A. B. The cellular fate of glucose and its relevance in type 2 diabetes. Endocr. Rev. 25, 807–830 (2004).
  • 29.
    Schrauwen, P. & Hesselink, M. K. C. Reduced tricarboxylic acid cycle flux in type 2 diabetes mellitus? Diabetologia 51, 1694 (2008).
  • 30.
    Gaster, M. Reduced TCA flux in diabetic myotubes: A governing influence on the diabetic phenotype? Biochem. Biophys. Res. Commun. 387, 651–655 (2009).
  • 31.
    Geisler, C. E., Hepler, C., Higgins, M. R. & Renquist, B. J. Hepatic adaptations to maintain metabolic homeostasis in response to fasting and refeeding in mice. Nutr. Metab. 13, 62 (2016).
  • 32.
    Zhang, Y. et al. Metabolic impact induced by total, water soluble and insoluble components of PM2.5 acute exposure in mice. Chemosphere. 207, 337–346 (2018).
  • 33.
    Wang, Z., Gao, S., Xie, J. & Li, R. Identification of multiple dysregulated metabolic pathways by GC-MS-based profiling of liver tissue in mice with OVA-induced asthma exposed to PM2.5. Chemosphere. 234, 277–286 (2019).
  • 34.
    Wang, Z., Gao, S., Xie, J. & Li, R. Identification of multiple dysregulated metabolic pathways by GC-MS-based profiling of lung tissue in mice with PM2.5-induced asthma. Chemosphere. 220, 1–10 (2019).
  • 35.
    Wang, X.-F. et al. Study on Reproductive Toxicity of Fine Particulate Matter by Metabolomics. Chinese Journal of Analytical Chemistry 45, 633–640 (2017).
  • 36.
    Xu, Y. et al. Metabolomics analysis of a mouse model for chronic exposure to ambient PM2.5. Environ. Pollut. 247, 953–963 (2019).
  • 37.
    Kobayashi, A. et al. Effects of spaced feeding on gene expression of hepatic transaminase and gluconeogenic enzymes in rats. J. Toxicol. Sci. 36, 325–337 (2011).
  • 38.
    Jungas, R. L., Halperin, M. L. & Brosnan, J. T. Quantitative analysis of amino acid oxidation and related gluconeogenesis in humans. Physiol. Rev. 72, 419–448 (1992).
  • 39.
    Basu, R., Chandramouli, V., Dicke, B., Landau, B. & Rizza, R. Obesity and Type 2 Diabetes Impair Insulin-Induced Suppression of Glycogenolysis as Well as Gluconeogenesis. Diabetes. 54, 1942 (2005).
  • 40.
    Krssak, M. et al. Alterations in postprandial hepatic glycogen metabolism in type 2 diabetes. Diabetes. 53, 3048–3056 (2004).
  • 41.
    Chu, C. A. et al. Effects of free fatty acids on hepatic glycogenolysis and gluconeogenesis in conscious dogs. Am. J. Physiol. Endocrinol. Metab. 282, E402–E411 (2002).
  • 42.
    Yang, W.-M., Min, K.-H. & Lee, W. MiR-1271 upregulated by saturated fatty acid palmitate provokes impaired insulin signaling by repressing INSR and IRS-1 expression in HepG2 cells. Biochem. Biophys. Res. Commun. 478, 1786–1791 (2016).
  • 43.
    Rizzo, A. M. et al. Repeated Intratracheal Instillation of PM10 Induces Lipid Reshaping in Lung Parenchyma and in Extra-Pulmonary Tissues. Plos One. 9, e106855 (2014).
  • 44.
    Lambert, J. E., Ramos-Roman, M. A., Browning, J. D. & Parks, E. J. Increased de novo lipogenesis is a distinct characteristic of individuals with nonalcoholic fatty liver disease. Gastroenterology. 146, 726–735 (2014).
  • 45.
    Koliaki, C. et al. Adaptation of hepatic mitochondrial function in humans with non-alcoholic fatty liver is lost in steatohepatitis. Cell Metab. 21, 739–746 (2015).
  • 46.
    Schmid, A. I. et al. Liver ATP synthesis is lower and relates to insulin sensitivity in patients with type 2 diabetes. Diabetes care. 34, 448–453 (2011).
  • 47.
    Summers, S. A. Ceramides in insulin resistance and lipotoxicity. Prog. Lipid. Res. 45, 42–72 (2006).
  • 48.
    Erion, D. M. & Shulman, G. I. Diacylglycerol-mediated insulin resistance. Nat. Med. 16, 400–402 (2010).
  • 49.
    Jin, X., Xue, B., Ahmed, R. Z., Ding, G. & Li, Z. Fine particles cause the abnormality of cardiac ATP levels via PPARĪ±-mediated utilization of fatty acid and glucose using in vivo and in vitro models. Environ. Pollut. 249, 286–294 (2019).
  • 50.
    Zhong, H. et al. Liver and Adipose Expression Associated SNPs Are Enriched for Association to Type 2 Diabetes. PLOS Genet. 6, e1000932 (2010).
  • No comments:

    Post a Comment

    i can teach you if you comment me in eny porticular subject or topic .

    air pollution new years eve |pollution on new year,

    air is best source of our life so first clean air  so clean the air first air is most important matter in this universe  some important in a...